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Abstract

This paper aims at characteristic failure mechanisms of cohesive frictional materials at two levels of observation: (a)

at the macroscale of continuum elastoplasticity, and (b) at the microscale of active microplanes with arbitrary orien-

tation. Thereby, the criteria for the loss of uniqueness and the loss of ellipticity will be discussed for a macroscopic as

well as a microplane-based anisotropic plasticity formulation. In addition, conditions for shear dilatancy will be de-

veloped at the two scales which illustrate the necessity to couple normal and shear components at each micro-

plane. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The prediction of failure caused by the deterioration of material properties is of great interest not only
for material scientists but also for various practical engineering applications. Especially, the behavior of
cohesive frictional materials like soils, concrete or rock which exhibit an entirely di�erent response at in-
creasing levels of con®nement, is not yet fully understood and thus cannot be simulated properly. In
contrast to metals, cohesive-frictional materials are characterized by a large contrast of tensile and com-
pressive strength values due to strong pressure sensitivity. Consequently, their possible failure modes cover
the wide range from purely decohesive failure in tension to ductile sliding failure in shear and compression.
Moreover, the granular action of the aggregate causes frictional e�ects, which induce dilatational defor-
mation as pointed out already by Reynolds (1885) as early as 1885. The suppression of shear dilatancy and
concomitant con®nement leads to ductile failure modes of the shear-compression type even in shear
dominated loading situations.

Material deterioration usually starts at the microscopic level manifesting itself in the formation of
microdefects such as microcracks or microvoids. Under progressive loading, the coalescence of these
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microdefects results in the development of macroscopic failure zones in the form of shear bands or mac-
roscopic cracks while the rest of the structure might even exhibit unloading. Especially for cohesive fric-
tional materials, the phenomenon of strain localization induces a highly anisotropic material response.
Since the resulting zones of localized deformation can be understood as precursors to structural failure, the
appropriate prediction of strain localization is of great importance.

These characteristic properties of cohesive frictional materials are normally captured within the
framework of the theory of plasticity. The classical two invariant plasticity formulation of Drucker and
Prager (1952) was one of the ®rst models which take into account the above mentioned phenomena. Within
this study, we will extend the original Drucker±Prager formulation in the form of a parabola in the two
invariant space. The two parameters, the friction coe�cient and the cohesive yield strength, can be directly
related to the uniaxial tensile and compressive strength determined from experimental measurements.

The performance of the parabolic two invariant plasticity formulation will be investigated by means of a
systematic study of di�use and localized failure. Traditionally, di�erent stages of material failure can be
distinguished. While the loss of uniqueness of the incremental response corresponds to a singularity of the
elasto-plastic tangent operator, the singular behavior of the elasto-plastic acoustic tensor signals a change
of the type of the governing partial di�erential equations which manifests itself in the formation of a spatial
discontinuity in the strain rate ®eld (Thomas, 1961 or Hill, 1958, 1962). For geomaterials, particularly the
latter condition is of interest, since it often develops in the hardening regime when non±associated plasticity
is used (Rudnicki and Rice, 1975). This localization condition attains a geometrical interpretation in the
plane of the Mohr stress coordinates (Mohr, 1882). By imposing tangency between the largest stress circle
and the localization condition which takes the form of an ellipse, the critical failure angle as well as the
critical hardening modulus may be determined (Benallal, 1992; Benallal and Comi, 1996; Iordache and
Willam, 1998, 1997).

The development of localized failure is an extremely anisotropic process. The two invariant Drucker±
Prager formulation, however, is isotropic to start with and captures failure only indirectly in the form of a
singularity of the acoustic tensor which re¯ects the stress induced anisotropy of the tangent operator. The
microplane concept is one of the classical concepts to describe anisotropy based on the idea of formulating
constitutive relations by integrating the planewise material behavior over all possible directions in space.
Obviously, the advantage of this idea, which originally dates back to Mohr (1900a,b), is that material
anisotropy is taken into account in a natural and very simple way. Nevertheless, the original microplane
models of Ba�zant and Gambarova (1984), Ba�zant and Prat (1988) and Carol et al. (1992) were developed
exclusively for elasto-damaging materials. The concept of formulating material behavior in a planewise
sense has become well accepted when modeling sliding in crystallographic metals, a phenomenon, which is
independent of the state of hydrostatic pressure. However, to model the failure of cohesive frictional
materials, a pressure-sensitive microplane-based plasticity model has to be introduced. Thereby, the two
invariants of the Drucker±Prager plasticity model, namely, the trace of the stress tensor and the second
invariant of the stress deviator, will be replaced by the plane based volumetric and tangential stress
component, respectively. For each direction, an individual yield function in terms of these two components
determines the amount of plastic ¯ow. Consequently, any type of anisotropic material behavior can be
described in a natural fashion since the macroscopic stress tensor is given as the integral of the resulting
planewise stress components of all possible directions in space.

The objective of this paper is the comparison of the failure characteristics of a well-known macroscopic
plasticity formulation with those of a microplane-based plasticity model. The paper is organized as follows.
After brie¯y summarizing the set of constitutive equations for the standard macroscopic plasticity model, a
short introduction into failure analysis will be given. The theoretical background will be illustrated by
means of localization analysis of the simple shear problem using non-associated parabolic Drucker±Prager
plasticity. It will be shown, how the localization condition may be interpreted geometrically in the plane of
Mohr's coordinates. The simple shear problem will be used in order to study the features of the model
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under moderate and high con®nement. In the second part of the paper, a microplane-based plasticity model
will be discussed which is closely related to the macroscopic parabolic Drucker±Prager model. Special
attention will be given to the conditions of pressure-sensitivity to capture the Reynolds e�ect and the re-
lation between the microplane parameters and the macroscopic material properties. Again, the behavior of
the model will be illustrated by means of the model problem of simple shear. We will conclude by pointing
out the basic similarities and conceptual di�erences between the microplane-based and the macroscopic
plasticity model.

2. Macroscopic elasto-plasticity

We start by brie¯y summarizing the well-known set of equations of a macroscopic elasto-plasticity
model which is herein restricted to the small strain setting. Consequently, the strain tensor � � rsymu, is the
symmetric part of the displacement gradient, which can be additively decomposed into an elastic and a
plastic part:

� � �el � �pl: �1�
Moreover, a free energy Wmac is introduced in terms of the total strains, the plastic strains and an internal
variable j which accounts for the hardening behavior:

Wmac � Wmac��; �pl; j� � 1

2
�el : Eel : �el �

Z j

0

Y mac
F �j�dĵ: �2�

With the classical arguments, the evaluation of the Clausius±Duhem inequality yields the stress tensor r as
thermodynamically conjugate variable to the plastic strain rate with

r � oW
o�el

mac

and _r � Eel : _�
h
ÿ _�pl

i
; �3�

whereby the relation between the stress rates and the elastic strain rates is de®ned in terms of the fourth
order elasticity tensor Eel. Furthermore, the yield stress Y mac

F can be obtained as conjugate variable to the
internal variable j, with

Y mac
F � oW

oj

mac

and _Y mac
F � H _j �4�

such that the relation between the rate of the yield stress and the internal variable de®nes the hardening
modulus H. The yield function F mac

F mac r; Y mac
F

ÿ �
6 0 with m :� oF

or

mac

�5�

characterizes the elastic domain. Its normal in the stress space will be denoted by m. The evolution of plastic
strains is governed by the plastic ¯ow rule

_�pl � _c l with l :� oQ
or

mac

; �6�

whereby l denotes the normal to the plastic potential Qmac which di�ers from the yield function F mac in the
general non-associated case. The set of constitutive equations is completed by the Kuhn-Tucker conditions

F mac6 0; _cP 0; F mac _c � 0 �7�
and the consistency condition
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_F mac _c � 0: �8�
The latter de®nes the plastic multiplier c

_c � 1

h
m : Eel : _� �9�

with h � H � m : Eel : l. Finally, the elasto-plastic tangent operator Eep relating the stress and strain rates
takes the classical form of a rank-one update of the elastic material operator Eel, such that

_r � Eep : _� with Eep � or

o�
� Eel ÿ 1

h
Eel : l
 m : Eel: �10�

3. Macroscopic failure analysis

This section introduces di�erent criteria to indicate the onset of failure. As depicted in Fig. 1, increased
loading leads to a progression of kinematic deterioration which starts from di�use failure, and which
progresses through localized failure to a discrete failure pattern. Thereby, di�use failure will be referred to
as a loss of uniqueness in the spirit of an algebraic singularity. The following discussion will be restricted to
the ®rst two stages of failure, di�use failure characterized through the loss of uniqueness and localized
failure indicated through the loss of ellipticity.

3.1. Di�use failure±loss of uniqueness

According to Fig. 1, di�use failure maintains continuity in the rates of displacement and displacement
gradient ®elds. It corresponds to a stationary stress state indicated through the limit point condition

_r � 0: �11�
For incrementally linear elasto-plastic materials with _r � Eep : _�, such that

Eep : _� � 0; �12�
the condition for the loss of uniqueness is equivalent to a singular behavior of the elasto-plastic tangent
operator Eep,

Fig. 1. Schematic representation of progressive kinematic degradation.
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det Eep�! 0 with Eep � Eel ÿ l
 m

h
: �13�

Note, that this tangent operator can be expressed as a rank one update of the elastic material operator
Eel, whereby the update tensors l and m take the following form:

l :� Eel : l;

m :� m : Eel:
�14�

Instead of solving the eigenvalue problem arising from Eq. (13), the following generalized eigenvalue

problem det��Eel�ÿ1
: Eep��! 0 is solved. Preconditioning of the elasto-plastic tangent operator with the in-

verse elasticity tensor yields the following relation:

Eel
� �ÿ1

: Eep � Iÿ Eel
� �ÿ1

:
l
 m

h
; �15�

whereby I denotes the fourth order unit tensor with the components �I�ijkl � �dik djl�sym
. Due to the rank-

one update structure of the elasto-plastic tangent operator, the critical eigenvalue kmin of the generalized
eigenvalue problem can be evaluated in closed form. This motivates the introduction of the scalar-valued
measure of material integrity DE,

kmin Eel
� �ÿ1

: Eep
h i

� 1ÿ DE with DE :� m : Eel
� �ÿ1

: l

m : Eel : l� H
: �16�

From the above de®nition, the following necessary condition for the loss of uniqueness and the critical
hardening modulus for the loss of uniqueness H may be determined.

1ÿ DE�! 0 ! H � 0: �17�
Note, that the criterion presented above can only be understood as a necessary condition for the loss of
uniqueness. For non-symmetric elasto-plastic tangent operators arising from non-associated plasticity
formulations, however, the vanishing determinant of the symmetric part of the tangent operator,
det�Eep�sym�! 0, provides a more critical lower bound condition according to the Bromwich bounds. Con-
sequently, for materials with non-symmetric material operators, loss of stability synonymous with a sin-
gularity of the symmetric tangent operator takes place before the limit point condition (11) is reached. In
this case, the critical hardening modulus may still be positive.

3.2. Localized failure±loss of ellipticity

The localization condition derived in the following is based on the early works of Hadamard (1903),
Thomas (1961) and Hill (1958, 1962). In contrast to the di�use failure mode described in the previous
section, localized failure of weak discontinuities is characterized through a discontinuity in the rate of the
displacement gradient while the ®eld of the displacement rate itself is still continuous. According to
Maxwell's compatibility condition, the jump in the rate of the displacement gradient may be expressed
exclusively in terms of a scalar-valued jump amplitude n, the unit jump vector m and the unit normal vector
to the discontinuity surface n:

jr _uj
h i

� n m
 n ! �j _�j� � n m� 
 n �sym: �18�
Equilibrium along the discontinuity surface according to Cauchy's lemma requires that

j_tj
h i

:� _t� ÿ _tÿ � 0; �19�
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whereby the traction vector t � n � r is de®ned according to Cauchy's theorem, such that

j_tj
h i

� n � j _rj
h i

� n � jEep : _�j
h i

� 0: �20�
With the assumption of a linear comparison solid, jEepj� � :� Eep� ÿ Eepÿ � 0, as proposed by Hill (1958),
the localization condition may be expressed in the following form:

n qep �m � 0 with qep :� n � Eep � n; �21�
whereby qep denotes the elasto-plastic acoustic tensor. The necessary condition for the onset of localization
indicating the loss of ellipticity is thus characterized through the singularity of this acoustic tensor.

det qep�! 0 with qep � qel ÿ el 
 em

h
: �22�

Note, that this elasto-plastic acoustic tensor can be expressed as a rank-one update of the elastic acoustic
tensor qel � n � Eel � n, whereby we have introduced the following abbreviations for the update vectors el

and em:

el :� n � Eel : l;

em :� m : Eel � n: �23�

Again, instead of solving the original eigenvalue problem (22), the generalized eigenvalue problem
det��qel�ÿ1 � qep��! 0 is used to identify the singularity (Ottosen and Runesson, 1991). Therefore, pre-condi-
tioning of the elasto-plastic acoustic tensor with the inverse of the elastic acoustic tensor leads to

qel
� �ÿ1 � qep � 1ÿ qel

� �ÿ1 � el 
 em

h
�24�

with 1 denoting the second order unit tensor with components �1�ij � dij. The closed form solution for the
critical eigenvalue kmin motivates the introduction of the scalar-valued measure of localization integrity Dq.

kmin qel
� �ÿ1 � qep
h i

� 1ÿ Dq with Dq :� em � qel� �ÿ1 � el

m : Eel : l� H
: �25�

It de®nes a necessary condition for localization as well as the critical hardening modulus H indicating the
loss of ellipticity:

1ÿ Dq�! 0 ! H � em � qel
� �ÿ1 � el ÿ m : Eel : l: �26�

4. Example: non-associated Drucker±Prager plasticity

4.1. Speci®cation of yield function and plastic potential

In order to characterize the elasto-plastic material model, the yield function F mac and the plastic po-
tential Qmac must be speci®ed. Herein, we will restrict ourselves to formulations depending on the ®rst
invariant of the stress tensor I1 and the second invariant of the stress deviator J2 with

I1 � r : 1;

J2 � 1
2
rdev : rdev;

�27�

whereby the deviator of the stress tensor is de®ned as rdev :� rÿ 1
3
�r : 1� 1. The two-invariant formulation

in terms of I1 and J2 was originally introduced by Drucker and Prager (1952) in order to model the plastic
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behavior of soils. A generalization of the original two parameter model which was characterized exclusively
in terms of the friction angle amac

F and the yield stress Y mac
F may be expressed in the following form:

F mac � F mac�I1; J2; Y mac
F � � J m

2 ÿ z c amac
F I1

� ÿ Y mac
F

�n
: �28�

Its dependence on four additional parameters enables the representation of a linear, an elliptic, a hyperbolic
and a parabolic shape in the f I1;

����
J2

p g-space (see Liebe and Willam (1999) for details). Herein, we will
apply a parabolic version of the generalized formulation, which results from choosing m � 1, z � ÿ1, c � 1
and n � 1, such that

F mac � F mac�I1; J2; Y mac
F � � J2 � amac

F I1 ÿ Y mac
F : �29�

The remaining two Drucker±Prager parameters can be derived uniquely from uniaxial tension and
compression tests (compare Fig. 2). They can thus be expressed in terms of the tensile and compressive
strength values ft and fc as

amac
F � fc ÿ ft

3
and Y mac

F � fc ft

3
: �30�

In the following, we will assume a non-associated plasticity formulation for which the plastic potential
Qmac is chosen independently from the yield function F mac:

Qmac � Qmac�I1; J2; Y mac
Q � � J2 � amac

Q I1 ÿ Y mac
Q : �31�

It is thus characterized through the two additional parameters amac
Q and Y mac

Q . Consequently, the normal to
the yield surface m and the normal to the plastic potential l take the following form:

m � oF
or

mac

� rdev � amac
F 1;

l � oQ
or

mac

� rdev � amac
Q 1:

�32�

Moreover, the explicit forms of the abbreviations em and el introduced in Eq. (23), together with the
de®nition of the fourth order elasticity tensor

Eel � E m
1� m� � 1ÿ 2m� � 1
 1� E

1� m
I �33�

result in the following expressions:

Fig. 2. Parabolic Drucker±Prager yield function.
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em � m : Eel � n � E
1� m

rdev � n� E
1ÿ 2m

amac
F n;

el � n � Eel : l � E
1� m

rdev � n� E
1ÿ 2m

amac
Q n:

�34�

4.2. Geometric interpretation of localization condition

This section provides a geometric illustration of the localization condition which can be interpreted as
tangency condition between the largest Mohr circle of stress and the geometric representation of the lo-
calization condition. The latter will be shown to plot as an ellipse in the coordinates of Mohr. The geo-
metric representation of failure criteria goes back to the early works of Mohr (1882, 1900a,b), who related
material failure to the tangency between the stress circle and a failure surface. A reinterpretation in the
sense of localized failure was given by Benallal (1992) and Benallal and Comi (1996) for elasto-plastic
material models. Extensions to Cosserat-type material formulations and enhanced plasticity models have
been presented only recently by Iordache and Willam (1998, 1997) and Liebe and Willam (1999). In a
similar context, the localization of elasto-damaging materials was discussed by Pijaudier-Cabot and
Benallal (1993) and Rizzi et al. (1995). In the following, we will brie¯y summarize the basic ideas of the
geometric localization analysis for the general non-associated parabolic Drucker±Prager plasticity model
introduced in the previous section. In Section 3.2, a condition which indicates the onset of localization has
been derived. According to Eq. (26), it takes the following form:

H � m : Eel : l � em � qel
� �ÿ1 � el: �35�

Herein, �qel �ÿ1
denotes the inverse of the elastic acoustic tensor, which can be determined analytically with

the help of the Sherman±Morrison formula.

qel
� �ÿ1 � 2 1� m� �

E
1ÿ 1� m

E 1ÿ m� � n
 n: �36�

In the following, the localization condition (35) will be transformed into Mohr's coordinates rN and rT with

rN :� n � r � n;
r2

T :� r � n� � � r � n� � ÿ r2
N:

�37�

A combination of Eq. (35) with Eqs. (32), (34) and (36) de®nes an ellipse in the plane of the Mohr stress
coordinates. It can be expressed as follows:

rN ÿ rO� �2
A2

� r2
T

B2
� 1 �38�

with rO characterizing the center of the ellipse, while A and B determine its size in the normal and tangential
direction, respectively.

rO � 1

3
I1 ÿ 1� m

2 1ÿ 2m� � amac
F

h
� amac

Q

i
;

A2 � 2
1ÿ m

1ÿ 2m
B2;

B2 � 1� m
2E

H � J2 � 1� m� �2
8 1ÿ 2m� � 1ÿ m� � amac

F

h
� amac

Q

i2

� 1� m
1ÿ m

amac
F amac

Q :

�39�
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A typical localization ellipse is illustrated in Fig. 3. Note, that the center and the shape of the ellipse are not
in¯uenced by the hardening modulus H. The hardening modulus only in¯uences the size of the corre-
sponding ellipse. In addition to the localization ellipse, Fig. 3 depicts the Mohr circle of stress

rN� ÿ rC�2 � r2
T � r2; �40�

which characterizes the actual critical stress state. Herein, rC and r denote the center and the radius of the
circle, respectively. They can be expressed in terms of the principal stresses rI and rIII.

rC � rI � rIII

2
;

r � rI ÿ rIII

2
:

�41�

The tangency condition between localization ellipse and the Mohr circle results in a quadratic equation
de®ning the analytical solutions for critical failure angle Hcrit and the critical hardening modulus H crit. For
the non-associated Drucker±Prager plasticity model according to Eq. (39), the critical failure angle may be
expressed as follows:

tan2 Hcrit �
r ÿ 1ÿ 2m� � rC ÿ I1 =3� � � 1� m� � amac

F � amac
Q

h i.
2

r � 1ÿ 2m� � rC ÿ I1 =3� � � 1� m� � amac
F � amac

Q

h i.
2
: �42�

Obviously, the critical failure angle is strongly in¯uenced by the friction coe�cient amac
F and the dilatancy

parameter amac
Q . Furthermore, the failure angle is also in¯uenced by Poisson's ratio m. The analytical solu-

tion for the critical hardening modulus H crit takes the following form:

H crit � 2E
1� m

1�
"
ÿ 2m� rC

�
ÿ 1

3
I1 � 1� m

2 1ÿ 2m� � amac
F

h
� amac

Q

i�2

� r2 ÿ J2 ÿ 1� m� �2
8 1ÿ 2m� � 1ÿ m� �

�
�
amac

F � amac
Q

�2

ÿ 1� m� �
1ÿ m� � a

mac
F amac

Q

#
: �43�

4.3. Model problem of simple shear

In the following, the localization condition will be established for the model problem of simple shear.
The simple shear test, which is realized experimentally through the shear box experiment, is a strain

Fig. 3. Localization ellipse and major stress circle in the Mohr coordinates.
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controlled test. When experimentally studied in a shear box experiment, nonlinear elastic, anisotropic
elastic and pressure sensitive elasto-plastic materials exhibit a dilatant behavior. The phenomenon of di-
latancy had been ®rst established more than a hundred years ago by Reynolds (1885) and is thus often
referred to as Reynolds e�ect. Due to the constitutive coupling of normal and shear components, the
observed failure modes vary from a purely ductile shear failure to a compression failure of brittle nature,
(compare Fig. 4). As a natural consequence of the Reynolds e�ect, an apparent hardening can be observed
due to the con®nement of dilatancy.

The question of shear dilatancy is directly related to the volumetric component of the ¯ow rule (Willam
et al., 1999). In fact, a su�cient condition for volumetric±deviatoric coupling may be formulated in terms of

1 : Eel : l > 0 or amac
Q > 0 �44�

to account for the Reynolds e�ect in continuum plasticity.
In a numerical simulation, all strain components except for the in-plane shear strain �12 are prescribed to

vanish identically, while the in-plane shear strain increases gradually at constant strain rate. The critical
directions giving rise to localized failure will be studied by means of a non-associated parabolic Drucker±
Prager plasticity formulation. Thereby, the in¯uence of lateral con®nement is increased gradually by in-
creasing the ratio of compressive to tensile strength fc : ft. This ratio directly a�ects the value of the friction
coe�cient amac

F whereas, the parameter amac
Q is kept constant at zero, thus introducing a plastic potential of

von Mises type.
Table 1 summarizes the resulting critical failure angle Hcrit for di�erent Poisson's ratios and strength

ratios fc : ft. The critical failure angle ranges from 0° to 45°, thus characterizing a pure mode I type failure
as well as mixed failure modes. As expected, the critical failure angle decreases with an increase of lateral
con®nement which is caused by increasing the mismatch of the compressive to tensile strength. Moreover,
the in¯uence of lateral con®nement increases for larger values of Poisson's ratio.

Fig. 4. Model problem ± simple shear.

Table 1

Critical failure angle Hcrit ± simple shear problem

fc : ft m� 0.000 m� 0.125 m� 0.250 m� 0.375 m� 0.499

1:1 45.00° 45.00° 45.00° 45.00° 45.00°
3:1 35.26° 33.99° 32.69° 31.36° 30.01°
5:1 29.45° 27.24° 24.90° 22.38° 19.64°
8:1 22.20° 18.26° 13.37° 5.39° 0.00°
12:1 11.78° 0.00° 0.00° 0.00° 0.00°
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Figs. 5±7 show the result of the corresponding geometric localization analysis on the basis of a simu-
lation with Poisson's ratio of m � 0:2. The ®rst ®gure of the series is based on a compressive to tensile
strength ratio of one, fc : ft � 1 : 1. This choice corresponds to a vanishing friction coe�cient, amac

F � 0:0,
thus representing the classical yield function of von Mises type. For this analysis, two critical directions can

Fig. 5. Geometric localization analysis ± fc : ft � 1 : 1.

Fig. 6. Geometric localization analysis ± fc : ft � 3 : 1.

Fig. 7. Geometric localization analysis ± fc : ft � 12 : 1.
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be found under Hcrit � 45° and Hcrit � 135° indicating a pure shear failure. This typical failure mode for
pressure insensitive materials is characteristic for the well-known phenomenon of L�uders band formation in
metals.

Fig. 6 depicts the result of a localization analysis for which the compressive strength is assumed to be
three times larger than the tensile strength, fc : ft � 3 : 1. The corresponding friction coe�cient of
amac

F � 0:6667 induces a relatively low con®nement. Again, two critical directions can be found. However,
they have rotated slightly towards the direction of maximum principal stress. The corresponding critical
failure angles of Hcrit � 33:211° and Hcrit � 146:789° indicate a mixed shear compression failure.

Finally, the compressive strength is assumed to be 12 times larger than the tensile strength,
fc : ft � 12 : 1, thus introducing a high con®nement. The related friction coe�cient takes a value of
amac

F � 3:6667, which corresponds to the one of cementitious materials like concrete. For this class of
materials with a relatively large mismatch between compressive and tensile strength, a purely brittle failure
mode can be observed. Fig. 7 illustrates the classical mode I failure for which the critical direction cor-
responds to the direction of maximum principal stress at Hcrit � 0°.

In addition to the analytical localization analysis, a numerical localization study on the material point
level has been performed. Therefore, the rate equations of elasto-plasticity of Section 2 have to be dis-
cretized in time. An implicit Euler backward scheme in combination with a classical two-step predictor
corrector algorithm is applied in order to perform the time integration. In this speci®c case, the corrector is
based on a radial return since the plastic ¯ow is assumed to be purely deviatoric. Fig. 8 depicts the resulting
load factor versus shear strain curves of the three di�erent analyses. The marked points of the corre-
sponding curves indicate the onset of localization which coincides with the initiation of plastic yielding in all
three cases. Obviously, due to the non-associated nature of the underlying plasticity formulation, locali-
zation may occur, or in other terms a spatial discontinuity may form in the hardening regime before a limit
point has been reached.

5. Microplane-based elasto-plasticity

In this section, a microplane-based plasticity model is introduced, which is able to account for aniso-
tropy in a natural fashion. Its basic features are borrowed from the kinematically constrained microplane
damage models ®rst presented by Ba�zant and Gambarova (1984), Ba�zant and Prat (1988) and Carol et al.
(1992). The application to elasto-plasticity was discussed by Carol and Ba�zant (1997). In contrast to the
existing microplane models based on the introduction of three di�erent uncoupled strain components, we
will restrict ourselves to a formulation which can be expressed exclusively in terms of the volumetric and the

Fig. 8. Load factor vs. shear strains ± fc : ft � 1 : 1, 3 : 1 and 12 : 1.

7270 E. Kuhl et al. / International Journal of Solids and Structures 37 (2000) 7259±7280



tangential strains and stresses on the microplane. For this speci®c choice, which can be considered as a
special case of the existing microplane formulations, the normal component on the microplane results
exclusively from the volumetric projection. Note, that this speci®c microplane formulation does not imply,
that the macroscopic strains are purely volumetric. Consequently, the normal deviatoric strains, which are
considered in previous microplane formulations, do not necessarily have to vanish. However, it is assumed
that the deviatoric strains do not contribute to the free energy on the microplane level. Motivated by the
macroscopic plasticity formulation, we will introduce one single yield function on each microplane in order
to account for the constitutive coupling between normal and tangential stress components.

5.1. Kinematic constraint

In accordance with the original microplane formulations, the model presented herein is based on the
kinematic constraint. Accordingly, the individual strain components of one material plane, the scalar-
valued volumetric strain �V and the tangential strain vector �T, can be expressed as projections of the overall
strain tensor �

�V � V : �;

�T � T : �
�45�

with the volumetric and the tangential projection tensor V and T, which are of second and third order,
respectively.

V � 1
3

1;

T � n �Iÿ n
 n
 n:
�46�

As illustrated in Fig. 9, the strain vector t� of the corresponding plane can be understood as the sum of the
plane's normal n scaled by the volumetric strain and the tangential strain vector.

t� � �V n� �T: �47�

5.2. Constitutive equations

The constitutive equations of the microplane-based plasticity model, can be introduced in analogy to the
macroscopic plasticity formulation. They are based on the additive decomposition of the volumetric and
the tangential strain component into elastic and plastic parts:

�V � �el
V � �pl

V ;

�T � �el
T � �pl

T :
�48�

Fig. 9. Strain and stress components on microplane.
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The free energy Wmic related to one individual microplane can thus be introduced as a function of the total
and the plastic strain components and an internal variable j which accounts for the hardening behavior:

Wmic � Wmic��V; �
pl
V ; �T; �

pl
T ; j�: �49�

Consequently, the volumetric and the tangential stress components rV and rT are given as the conjugate
quantities to the corresponding strains such that

rV � oWmic

o�el
V

and _rV � Eel
V _�V

h
ÿ _�pl

V

i
;

rT � oWmic

o�el
T

and _rT � Eel
T _�T

h
ÿ _�pl

T

i
;

�50�

whereby Eel
V and Eel

T denote the volumetric and the tangential elastic microplane modulus, respectively.
Moreover, the microplane-based yield stress Y mic

F is introduced conjugate to the internal variable j. The
relation between the evolution of the yield stress and the rate of this internal variable de®nes the micro-
plane-based softening modulus H, such that

Y mic
F � oW

oj

mic

and _Y mic
F � H _j: �51�

Similar to the macroscopic model, the elastic domain in the stress space is bounded by the yield function
F mic

F mic rV; rT; Y mic
F

ÿ �
6 0 with mV :� oF mic

orV

and mT :� oF mic

orT

; �52�

whereby mV and mT denote its normal in the volumetric and the tangential direction. Note, that in order to
take into account a normal-tangential coupling which is neglected in the original microplane models, a
single-surface yield criterion has been introduced on the microplane level. The evolution of the plastic strain
components �V and �T is determined by the volumetric and the tangential ¯ow rule

_�pl
V � _c lV with lV :� oQmic

orV

;

_�pl
T � _c lT with lT :� oQmic

orT

�53�

with lV and lT denoting the ¯ow directions which can be understood as normals to a plastic potential Qmic.
An associated ¯ow rule is characterized through a plastic potential, which is identical to the yield function,
such that F mic � Qmic. The Kuhn±Tucker conditions

F mic6 0; _c P 0; F mic _c � 0 �54�
and the consistency condition

_F mic _c � 0 �55�
govern the loading±unloading process. Furthermore, the evaluation of the consistency condition yields the
de®nition of the plastic multiplier c of the following form:

_c � 1

h
mV E

el
V V

� � mT E
el
T � T

�
: _� �56�

with h � H � mV E
el
V lV � mT E

el
T � lT.
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5.3. Homogenization

In order to relate the response of all microplanes in space to the macroscopic response on the material
point level, we will make use of the following fundamental assumption according to Carol et al. (2000):

Wmac � 3

4p

Z
X

Wmic dX: �57�

It states, that the free energy of a material point can be understood as the integral of all microplane-based
free energies integrated over the entire solid angle X. Following the traditional line of deriving constitutive
formulations, the overall stresses tensor is derived from the evaluation of the Clausius±Duhem inequality. It
is thus de®ned as the thermodynamically conjugate quantity to the macroscopic strains. A combination of
the above equation with Eq. (57) yields the de®nition of the macroscopic stress tensor,

r � oW
o�el

mac

� 3

4p

Z
X

V
oWmic

o�el
V

�
� TT � oWmic

o�el
T

�
dX �58�

which may be expressed in terms of the microplane stress components de®ned through Eq. (50) weighted by
the individual projection tensors.

r � 3

4p

Z
X

V rV

� � TT � rT

�
dX: �59�

Eq. (59) may be understood as the symmetric part of the dyadic products of all traction vectors tr with
the corresponding plane's normal integrated over the solid angle

r � 3

4p

Z
X

tr� 
 n�sym
dX with tr � rV n� rT; �60�

whereby the de®nition of the traction vector is illustrated in Fig. 9. The macroscopic tangent operator
relating the macroscopic stresses and strains can be derived in an analogous form:

Eep � dr

d�
� 3

4p

Z
X

V

�

 dr

d�V

� TT � dr

d�T

�
dX: �61�

Similar to the overall stress tensor, it can be expressed exclusively in terms of the quantities on the
microplanes weighted by the individual projection tensors:

Eep � Eel ÿ 3

4p

Z
X

1

h
Eel

V V lV

� � Eel
T TT � lT

�
 mV V Eel
V

� � mT � T Eel
T

�
dX: �62�

In analogy to the macroscopic formulation of plasticity where the pressure sensitivity of the plastic ¯ow rule
is responsible for shear dilatancy, a su�cient microplane condition is obtained for coupling volumetric and
tangential components when each microplane satis®es the inequality

1 : Eel
V V lV

� � Eel
T TT � lT

� � 1 : Eel
V V lV

� �
> 0 or amic

Q > 0: �63�

This equivalent to say that amic
Q > 0 on each microplane, assures coupling and captures the Reynolds e�ect.

In this context it is important to note that the volumetric component is the same on all microplanes and
does not depend on the orientation of a speci®c microplane. In fact, it is this particular feature which
introduces a common volumetric contribution in the yield condition and thus interaction among the plastic
action on each microplane.
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5.4. Discretization of solid angle

In the previous section, the overall quantities have been de®ned through integral expressions. The an-
alytical evaluation of these integrals can be very di�cult or even impossible in the general anisotropic case.
Therefore, Ba�zant and Oh (1985, 1986) have proposed to apply a numerical integration technique, whereby
the integral over the solid angle is replaced by a sum of the corresponding term evaluated at discrete in-
tegration points:

3

4p

Z
X
���dX �

Xnmp

I�1

���IwI : �64�

Herein, wI is the weighting coe�cient of the I's point, whereas nmp denotes the total number of integration
points. Within this study, an integration with nmp � 42 integration points has been applied. The geometry of
these points, which goes back to Stroud (1971), is depicted in Fig. 10. The numerically approximated
macroscopic stresses tensor thus takes the following form

r �
Xnmp

I�1

rI
V V I

� � rI
T � T I

�
wI ; �65�

while the macroscopic tangent operator can be approximated as follows:

Eep � Eel ÿ
Xnmp

I�1

1

hmic I
Eel

V V I lI
V

� � Eel
T TT I � lI

�
 mI
V V I Eel

V

� � mI
T � T I Eel

T

�
wI : �66�

6. Microplane-based failure analysis

6.1. Di�use failure±loss of uniqueness

According to the results of Section 3.1, the loss of uniqueness on the material point level corresponds to
the singular behavior of the elasto-plastic tangent operator which takes the following form for the mi-
croplane-based plasticity model:

det Eep�! 0 with Eep � Eel ÿ 3

4p

Z
X

l
 m

h
dX: �67�

Note that herein, the following abbreviations have been introduced:

Fig. 10. Discretization of solid angle with 42 integration points.
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l :� Eel
VVlV � Eel

TTT � lT;

m :� mVVEel
V � mT � TEel

T:
�68�

The solution of the corresponding generalized eigenvalue problem det��Eel�ÿ1 : Eep� requires a pre-condi-
tioning with the inverse of the elasticity tensor:

Eel
� �ÿ1

: Eep � Iÿ Eel
� �ÿ1

:
3

4p

Z
X

l
 m

h
dX: �69�

In contrast to the macroscopic elasto-plastic tangent operator, the update structure of the microplane-
based tangent moduli is of multiple rank. Consequently, the related measure of material integrity DE which
is de®ned in terms of the smallest eigenvalue of the generalized eigenvalue problem kmin��Eel�ÿ1 : Eep� �
1ÿ DE can only be calculated numerically.

6.2. Localized failure±loss of ellipticity

In Section 3.2, we have introduced the localization condition for the macroscopic plasticity model. Its
microplane-based counterpart can be expressed as follows:

det qep�! 0 with qep � qel ÿ 3

4p

Z
X

el 
 em

h
dX; �70�

whereby the following abbreviations for the update vectors el and em have been applied:

el :� n � Eel
VVlV � Eel

TTT � lT

� �
;

em :� mVVEel
V � mT � TEel

T

� � � n: �71�

The solution of the generalized eigenvalue problem det��qel�ÿ1 � qep��! 0 involves pre-conditioning with the
elastic acoustic tensor:

qel
� �ÿ1 � qep � 1ÿ qel

� �ÿ1 � 3

4p

Z
X

el 
 em

h
dX: �72�

However, it becomes obvious, that the related measure of localization integrity Dq resulting from the
smallest eigenvalue

kmin qel
� �ÿ1 � qep
h i

� 1ÿ Dq �73�
can be calculated only numerically because of the multiple rank-one update structure of the microplane-
based acoustic tensor.

7. Example: non-associated Drucker±Prager plasticity

7.1. Speci®cation of yield function and plastic potential

The current microplane formulations are all based on independent yield (failure) functions for each
traction component resulting in a multi-surface plasticity (failure) formulation on each microplane. Within
this study, we will introduce a single-surface yield function on each microplane which is motivated by the
macroscopic Drucker±Prager formulation. The microplane-based analog on to the generalized formulation
of Eq. (28) can thus be expressed as follows:

F mic � F mic�rV; rT; Y mic
F � � 1

2
rT � rT� �m ÿ z c amic

F rV

� ÿ Y mic
F

�n
; �74�
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whereby the original two invariant formulation in terms of I1 and J2 has been modi®ed into a formulation
in terms of rV and rT. Again, for the speci®c choice of m � 1, z � ÿ1, c � 1 and n � 1, the corresponding
yield function represents a parabola in the frV; rT g-space:

F mic � F mic�rV; rT; Y mic
F � � 1

2
rT � rT � amic

F rV ÿ Y mic
F ;

Qmic � Qmic�rV; rT; Y mic
Q � � 1

2
rT � rT � amic

Q rV ÿ Y mic
Q :

�75�

The corresponding plastic potential has been chosen in a similar fashion in analogy to the macroscopic
plasticity formulation of Section 4.1.

7.2. Adjustment of material parameters

In this section, relations between the microplane-based parameters and well-known macroscopic ma-
terial parameters will be pointed out. We will start by comparing the microplane-based elastic parameters
to the macroscopic bulk and shear modulus. The analysis is motivated by a comparison of the coe�cients
of both elasticity tensors. The fourth order elasticity tensor can be derived as a special case of Eq. (62).

Eel � 3

4p

Z
X
Eel

V V 
 V � Eel
T TT � T dX: �76�

For isotropic elasticity, the elastic microplane moduli Eel
V and Eel

T are identical for each plane and can
thus be written in front of the integral. The remaining integral expressions can be solved analytically by
making use of the below integration properties according to Lubarda and Krajcinovic (1993).Z

X
dX � 4p;Z

X
n
 ndX � 4p

3
1;Z

X
n
 n
 n
 ndX � 4p

3
Ivol

�
� 2

5
Idev

� �77�

which lead to the following integration formulae for the projection tensors, compare also Ba�zant and Prat
(1988).

3

4p

Z
X

V 
 V dX � Ivol;

3

4p

Z
X

TT � T dX � 3

5
Idev:

�78�

A comparison of the microplane-based elasticity tensor with the elasticity tensor of Hooke's law

Eel � Eel
VIvol � 3

5
Eel

TIdev;

Eel � 3 KIvol � 2 GIdev �79�

yields a direct relation between the volumetric and the microplane-based elastic moduli and the macro-
scopic bulk modulus K and shear modulus G.

Eel
V � 3 K and Eel

T � 10
3

G: �80�
Moreover, due to the assumption of a kinematic constraint, relations between the invariants of the strain

tensor and the microplane strain components can be set up. It turns out that the ®rst invariant of mac-
roscopic strain tensor can be expressed exclusively in terms of the volumetric microplane strains,
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I1 � � : 1 � 3

4p

Z
X
�V dX �81�

while the second invariant of macroscopic strain deviator is given in terms of the tangential strain vectors.

J2 � 1

2
�dev : �dev � 3

4p

Z
X

3

10
�T � �T dX: �82�

Note, that in the elastic regime, these relations between the invariants and the microplane components
equally hold for the macroscopic stress invariants and microplane-based stress components. For the stress
variables, however, these relations are only valid until the ®rst microplane starts yielding:

I1 � 3

4p

Z
X

rV dX and J2 � 3

4p

Z
X

3

10
rT � rT dX: �83�

Nevertheless, we will make use of the above expressions in order to quantify the relation between the
microplane-based friction coe�cient and microplane yield stress to their macroscopic counterparts. The
subsequent example of the simple shear test will show that the results in the purely elastic as well as in the
fully plasti®ed state are indeed comparable. The approximated stress invariants (83) will be combined with
the macroscopic parabolic Drucker±Prager yield function given in Eq. (29) and compared to the micro-
plane-based yield function (75).

F mac � 3

4p

Z
X

3

10
rT � rT

�
� fc ÿ ft

3
rV ÿ 1

3

fc ft

3

�
dX; �84a�

F mic � 1

2
rT � rT � amic

F rV ÿ Y mic
F : �84b�

A comparison of the coe�cients of the macroscopic expression (84a) multiplied by 5=3 with the micro-
plane-based yield function (84b) yields approximations for the microplane friction coe�cient amic

F and the
microplane yield stress Y mic

F :

amic
F � 5

3

ft ÿ fc

3
and Y mic

F � 5

9

fc ft

3
: �85�

Remarkably, due to the speci®c structure of the parabolic yield surface, the microplane friction coe�cient
takes ®ve-third of its macroscopic value, whereas, the microplane yield stress is only approximately ®ve-
ninth of its macroscopic counterpart.

7.3. Model problem of simple shear

In the following, the results of a numerical localization analysis based on the parabolic Drucker±Prager
based microplane plasticity model will be presented and compared to the corresponding results of the
macroscopic localization analysis of Section 4.3. In analogy to the algorithmic realization of the macro-
scopic model, an implicit Euler backward algorithm is a combination with the classical predictor corrector
scheme that is applied to discretize the underlying rate equations in the time domain. The Reynolds e�ect is
again studied with the help of the simple shear problem by varying the friction coe�cient amic

F while the
parameter amic

Q � 0 is kept constant at zero. Fig. 11 summarizes the results of the numerical localization
analysis on the basis of a simulation with Poisson's ratio of m � 0:2. Thereby, again the three di�erent
strength ratios are used: fc : ft � 1 : 1 leads to an associated von Mises type plasticity formulation on each
microplane, fc : ft � 3 : 1, introduce a low level of con®nement and fc : ft � 12 : 1 a high con®nement level
characteristic for concrete materials. Each diagram depicts the values of the normalized acoustic tensor
det qep= det qel for the di�erent directions in space in cylindrical coordinates.
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Obviously, for the associated plasticity formulation depicted in Fig. 11(a), with fc : ft � 1 : 1 and thus
amic

F � 0:0 the result is similar to the macroscopic plasticity formulation, (Fig. 7). It is characterized by a
shear failure mode with two critical directions under Hcrit � 45° and Hcrit � 135°. Fig. 11(b) shows the
results of the low strength ratio with fc : ft � 3 : 1 corresponding to amic

F � 1:1111. It is almost identical to
the analytical localization analysis for the macroscopic plasticity model showing a mixed shear compression
failure Fig. 6. The critical failure angles resulting from the numerical analysis take values of Hcrit � 32:75°
and Hcrit � 147:25 thus di�ering only slightly from the analytical results of Hcrit � 33:211° and
Hcrit � 146:789°. The last diagram of the series re¯ects the similar brittle failure mode as the macroscopic
analysis of Fig. 7. It results from the analysis with fc : ft � 12 : 1 and amic

F � 6:1111. Only one critical di-
rection can be observed which corresponds to the direction of maximum principal stress. The critical failure
angle of Hcrit � 0° thus indicates a pure mode I failure.

Fig. 12 illustrates the load factor versus shear strain curves of the three analyses. Remarkably, the linear
hardening on the microplane level results in a partially non-linear macroscopic response. The ®rst mark of
each curve corresponds to the situation, at which the ®rst microplane starts yielding. Until the second mark
is reached, a progressive onset of yielding takes places and all the other microplanes enter the plastic regime.
As soon as the last microplane starts to plastify, the measure of localization integrity Dq reaches its critical
value of one. This situation is indicated by the second mark in each curve. In contrast to the macroscopic
plasticity model, the onset of localization no longer corresponds to the onset of plastic yielding. Localized
failure is slightly delayed until plasticity has fully developed on all microplanes.

The results demonstrate, that under proportional loading, the microplane-based plasticity formulation
shows the same characteristics as the macroscopic model provided that the related material parameters are

Fig. 11. Numerical localization analysis ± fc : ft � 1 : 1, 3 : 1 and 12 : 1.

Fig. 12. Load factor vs. shear strains ± fc : ft � 1 : 1, 3 : 1 and 12 : 1.
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adjusted in an appropriate way (Fig. 8). It was shown that not only the principal features of both models
are comparable, but also the two localization analysis yield remarkably similar results.

8. Summary and conclusions

On the macroscopic scale, the behavior of cohesive frictional materials was characterized through a
generalized Drucker±Prager formulation of elasto-plasticity. The ensuing elasto-plastic tangent operator
has the classical structure of rank-one updates, thus a closed form solution could be presented for the loss
of uniqueness and the loss of ellipticity and illustrated at the example of simple shear.

The microplane concept served as the basis for a wide class of anisotropic constitutive formulations
generalizing the classical notion of frictional sliding on characteristic planes of weaknesses. Thereby, the
pointwise constitutive response was obtained through integration of non-linear material processes on each
microplane over all possible orientations. In order to account for the characteristic behavior of cohesive
frictional materials, a pressure-sensitive counterpart to the classical crystal plasticity formulation was in-
troduced on each microplane along the lines of Drucker±Prager plasticity. Thereby, independent yield
functions were formulated in terms of the volumetric and the tangential stress components on each mi-
croplane.

Since the structure of the microplane-based tangent operator is very complex, its analysis had to be
restricted to numerical simulations of di�erent failure scenarios. It was shown geometrically, how the
critical failure mode introduced active plastic sliding on speci®c microplanes. Finally, the failure charac-
teristics of the microplane model were compared with the analytical results of the generalized Drucker±
Prager formulation with the model problem of simple shear.

To conclude, the failure study on the macrolevel of continuum plasticity and on the level of microplane
plasticity showed comparable response behavior and localized failure modes in simple shear. Thereby, it
was essential to incorporate an yield condition on each microplane which couples the tangential shear
component with the volumetric stress.
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